MTH 201: Multivariable Calculus and Differential Equations

Problem Set 1: 3d geometry

1. Find the vector, parametric, and symmetric equations for the following lines.
(a) The line through points $(6,1-3)$ and $(2,4,5)$.
(b) The line through $(2,1,0)$ and perpendicular to both $x=y$ and $y=z$.
(c) The line of intersection of $x+y+z=1$ and $x+z=0$.
(d) The line through $(1,-1,1)$ and parallel to $x+2=\frac{y}{2}=z-3$.
(e) The line through ($5,1,0$) and perpendicular to $2 x-y+z=1$.
(f) The line through $(-4,-6,1)$ and $(2,5,3)$, perpendicular to the line through $(-3,2,0)$ and ($5,1,4$).
2. Find the vector and scalar equations of the following planes.
(a) The plane through $(-2,8,10)$ and perpendicular to $x=1+t, y=2 t, z=4-3 t$.
(b) The plane through $(4,-2,3)$ and parallel to $3 x-7 z=12$.
(c) The plane through $(3,-1,2),(8,2,4)$, and $(-1,-2,-3)$.
(d) The plane through $(-1,2,1)$ and contains the line of intersection of $x+y-z=2$ and $2 x-y+3 z=1$.
(e) The plane that passes through the line of intersection of $x-z=1$ and $y+2 z=3$ and is perpendicular to $x+y-2 z=1$.
(f) The plane that contains $x=3+2 t, y=t, z=8-t$ and is parallel to $2 x+4 y+8 z=17$.
3. Show that the distance between the parallel planes $a x+b y+c z+d_{1}=0$ and $a x+b y+$ $c z+d_{2}=0$ is given by

$$
D=\frac{\left|d_{1}-d_{2}\right|}{\sqrt{a^{2}+b^{2}+c^{2}}} .
$$

4. Determine whether the following planes are parallel, perpendicular, or neither. If parallel, find the distance between them, and if neither, find the angle between them.
(a) $x+2 y+2 z=1,2 x-y+2 z=1$.
(b) $2 x-3 y+4 z=5, x+6 y+4 z=3$.
(c) $x=4 y-2 z, 8 y=1+2 x+4 z$.
5. Dertermine whether the lines L_{1} and L_{2} line are parallel, skew, or intersecting. If they intersect, find the point of intersection.
(a) $L_{1}: x=1+2 t, y=3 t, z=2-t$
$L_{2}: x=-1+s, y=4+s, z=1+3 s$
(b) $L_{1}: \frac{x-1}{2}=\frac{y-3}{2}=\frac{z-2}{-1}$
$L_{2}: \frac{x-2}{1}=\frac{y-6}{-1}=\frac{z+2}{3}$
(c) $L_{1}: \frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$
$L_{2}: \frac{x-3}{-4}=\frac{y-2}{-3}=\frac{z-1}{2}$
(d) $L_{1}: x=-6 t, y=1+9 t, z=-3 t$
$L_{2}: x=1+2 s, y=4-3 s, z=s$
6. Find the traces (cross sections) of the given quadric surfaces in the planes $x=k, y=k$, $z=k$. Then identify the surfaces and sketch them.
(a) $y=z^{2}-x^{2}$
(b) $y^{2}-z^{2}-x^{2}=1$
(c) $4 x-y^{2}+4 z^{2}=0$
(d) $x=2 y^{2}+3 z^{2}$
(e) $x^{2}-y^{2}+z^{2}-4 x-2 y-2 z+4=0$
(f) $4 x^{2}+9 y^{2}=36 z^{2}=36$.
7. Sketch the following surfaces in \mathbb{R}^{3}.
(a) $y z=4$.
(b) $z=e^{y}$.
(c) $z=\cos x$.
(d) $z=y^{2}+x y$.
